Skip to main content

PL/SQL 201: When do I have to create a schema-level type?

I received this question in my In Box last week:

In your PL/SQL 101: Working with Collections article in Oracle Magazine, the use of "TYPE ... IS ..." is demonstrated.  However I found it's not possible to instantiate an object of the TYPE. It seems that the use of "CREATE TYPE ... AS OBJECT" is required. What are the differences between the 2 ways of creating a user defined data type? 

Yes, it can certainly be  confusing when you use the same TYPE statement for arrays and object types, but they cannot all be used in all the same ways in all the same places.

So let's go over the differences.

PL/SQL

Within PL/SQL, you use the TYPE statement to define two different, ahem, types of user-defined types: record and collection.

Record

A composite datatype consisting of one of more fields. Each field may be of almost any PL/SQL datatype, including another record type or a collection type.

You can use the TYPE statement to define a new record type in any declaration section of a PL/SQL block, including a package.

Here are some examples:

create or replace package my_types
is
   type two_fields_rt is record (
      field1 number, 
      field2 date);
end;
/

declare
   type two_fields_rt is record (
      field1 number, 
      field2 date);
   
   l_record1 two_fields_rt;   
   l_record2 my_types.two_fields_rt;
begin
   l_record1.field1 := 100;
end;
/

Collection

Collections are PL/SQL's versions of arrays. There are different sorts: associative array, nested table and varray. When you define a collection you define the type of data that can be sorted in the collection.

You can use the TYPE statement to define a new collection type in any declaration section of a PL/SQL block, including a package.

Here are some examples:

create or replace package my_types
is
   type two_fields_rt is record (
      field1 number, 
      field2 date);

   type assoc_array_t is table of two_fields_rt
      index by pls_integer;

   type mested_table_t is table of two_fields_rt;

   type varray_t is varray(10) of two_fields_rt;
end;
/

declare
   type assoc_array_t is table of two_fields_rt
      index by pls_integer;
   
   l_list1 assoc_array_t;
   l_list2 my_types.assoc_array_t;
   l_list3 my_types.varray_t;
begin
   l_list1 (100).field1 := 100;
end;
/

You may not, however, declare an object type inside a PL/SQL block. Like a relational table, object types must be defined at the schema level, as a database object, using a SQL DDL statemeant.

SQL

Within SQL, you use the CREATE TYPE DDL statement to define two different, ahem, types of user-defined types: collection and object. You cannot define a record type in SQL.

Collection

SQL implements two types of collections as part of its object model: nested table and varray. When you define a collection you define the type of data that can be sorted in the collection.

Here are some examples:

create or replace type nested_table_t is table of number
/

create or replace type varray_t is varray(10) of date
/

declare
   l_list1 nested_table_t := nested_table_t (1, 2, 3);
   l_list2 varray_t;
begin
   l_list1 (1) := 100;
end;
/

Object

Within SQL, you can also use CREATE TYPE to define an object type, which is Oracle's "version" of a class for object-oriented development.

create or replace type food_t is object (
   name varchar2(100),
   grown_in varchar2(100),
   food_category varchar2(30)
)
/

declare
   l_food food_t := food_t (
      'Brussels Sprouts', 'Soil', 'Vegetable');
begin
   l_food.grown_in := 'Sandy Soil';
end;
/

Even though you create an object type in the database just like a relational table (and the syntax is very similar), an object type is really just a "template" for declaring instances of the type, while a table is a container for data.

You can have a table of object types:

create table our_food (your_food food_t, my_food food_t)

But you cannot declare an object type within a PL/SQL block, for "temporary" use inside that block. Instead, declare a record type.


Comments

Popular posts from this blog

Why DBMS_OUTPUT.PUT_LINE should not be in your application code

A database developer recently came across my  Bulletproof PL/SQL  presentation, which includes this slide. That first item in the list caught his attention: Never put calls to DBMS_OUTPUT.PUT_LINE in your application code. So he sent me an email asking why I would say that. Well, I suppose that is the problem with publishing slide decks. All the explanatory verbiage is missing. I suppose maybe I should do a video. :-) But in the meantime, allow me to explain. First, what does DBMS_OUTPUT.PUT_LINE do? It writes text out to a buffer, and when your current PL/SQL block terminates, the buffer is displayed on your screen. [Note: there can be more to it than that. For example, you could in your own code call DBMS_OUTPUT.GET_LINE(S) to get the contents of the buffer and do something with it, but I will keep things simple right now.] Second, if I am telling you not to use this built-in, how could text from your program be displayed on your screen? Not without a lot o...

How to Pick the Limit for BULK COLLECT

This question rolled into my In Box today: In the case of using the LIMIT clause of BULK COLLECT, how do we decide what value to use for the limit? First I give the quick answer, then I provide support for that answer Quick Answer Start with 100. That's the default (and only) setting for cursor FOR loop optimizations. It offers a sweet spot of improved performance over row-by-row and not-too-much PGA memory consumption. Test to see if that's fast enough (likely will be for many cases). If not, try higher values until you reach the performance level you need - and you are not consuming too much PGA memory.  Don't hard-code the limit value: make it a parameter to your subprogram or a constant in a package specification. Don't put anything in the collection you don't need. [from Giulio Dottorini] Remember: each session that runs this code will use that amount of memory. Background When you use BULK COLLECT, you retrieve more than row with each fetch, ...

Table Functions, Part 1: Introduction and Exploration

Please do feel encouraged to read this and my other posts on table functions, but you will learn much more about table functions by taking my Get Started with PL/SQL Table Functions class at the Oracle Dev Gym. Videos, tutorials and quizzes - then print a certificate when you are done! Table functions - functions that can be called in the FROM clause of a query from inside the TABLE operator - are fascinating and incredibly helpful constructs. So I've decided to write a series of blog posts on them: how to build them, how to use them, issues you might run into. Of course, I am not the first to do so. I encourage to check out the  documentation , as well as excellent posts from Adrian Billington (search for "table functions") and Tim Hall . Adrian and Tim mostly focus on pipelined table functions, a specialized variant of table functions designed to improve performance and reduce PGA consumption. I will take a look at pipelined table functions in the latter part...