Skip to main content

SQL%ROWCOUNT: What/how much did my SQL statement do?

This post is courtesy of the PL/SQL Challenge quiz ending 27 November 2015:

If a SELECT INTO statement without a BULK COLLECT clause returns multiple rows, PL/SQL raises the predefined exception TOO_MANY_ROWS and SQL%ROWCOUNT returns 1, not the actual number of rows that satisfy the query.

Furthermore, the value of SQL%ROWCOUNT attribute is unrelated to the state of a transaction. Therefore: When a transaction rolls back to a savepoint, the value of SQL%ROWCOUNT is not restored to the value it had before the save point. When an autonomous transaction ends, SQL%ROWCOUNT is not restored to the original value in the parent transaction.

Here's the code for the quiz - see how you do!

And of course sign up to take each weekly quiz as it is released (you can even compete for international rankings).

I execute the following statements (which you can easily run yourself on LiveSQL):


CREATE TABLE plch_flowers
(
   id   INTEGER PRIMARY KEY,
   nm   VARCHAR2 (100) UNIQUE
)
/

BEGIN
   INSERT INTO plch_flowers
        VALUES (1, 'Orchid');

   INSERT INTO plch_flowers
        VALUES (2, 'Rose');

   COMMIT;
END;
/

Which of the choices result in "RC=1" being displayed on the screen after execution?

DECLARE
   l_id   INTEGER;
BEGIN
   SELECT id
     INTO l_id
     FROM plch_flowers
    WHERE nm = 'Orchid';

   DBMS_OUTPUT.put_line ('RC=' || SQL%ROWCOUNT);
END;
/

DECLARE
   l_id   INTEGER;
BEGIN
   SELECT id INTO l_id FROM plch_flowers;
EXCEPTION
   WHEN OTHERS
   THEN
      DBMS_OUTPUT.put_line ('RC=' || SQL%ROWCOUNT);
END;
/

BEGIN
   INSERT INTO plch_flowers
      SELECT id * 3, UPPER (nm) FROM plch_flowers;

   DBMS_OUTPUT.put_line ('RC=' || SQL%ROWCOUNT);
END;
/

DECLARE
   l_id   INTEGER;
BEGIN
   INSERT INTO plch_flowers
        VALUES (3, 'Tulip');

   SAVEPOINT inserted_row;

   INSERT INTO plch_flowers
        VALUES (3, 'Lotus');
EXCEPTION
   WHEN OTHERS
   THEN
      ROLLBACK TO inserted_row;
      DBMS_OUTPUT.put_line ('RC=' || SQL%ROWCOUNT);
END;
/

DECLARE
   l_id   INTEGER;

   PROCEDURE insert_and_save
   IS
      PRAGMA AUTONOMOUS_TRANSACTION;
   BEGIN
      INSERT INTO plch_flowers
         SELECT id * 3, UPPER (nm) FROM plch_flowers;

      COMMIT;
   END;
BEGIN
   INSERT INTO plch_flowers
        VALUES (10, 'Ambrosia');

   insert_and_save;
   DBMS_OUTPUT.put_line ('RC=' || SQL%ROWCOUNT);
END;
/


Background on SQL%ROWCOUNT

Static or embedded SQL are SQL statements that are written natively into your PL/SQL programs (as opposed to defining them as expressions for execution as dynamic SQL). An implicit cursor is a session cursor that is constructed and managed by PL/SQL. PL/SQL opens an implicit cursor every time you run a SELECT or DML statement. You cannot control an implicit cursor, but you can get information from its attributes. Oracle defines a number of attributes of implicit cursors, whose value can be obtained through the SQL%attribute syntax.

SQL%attribute always refers to the most recently run SELECT or DML statement. If no such statement has run, the value of SQL%attribute is NULL. An implicit cursor closes after its associated statement runs; however, its attribute values remain available until another SELECT or DML statement runs. The most recently run SELECT or DML statement might be in a different scope (another subprogram call that has now completed, for example).

To save an attribute value for later use, assign it to a local variable immediately. Otherwise, other operations, such as subprogram invocations, might change the value of the attribute before you can test it. SQL%ROWCOUNT returns NULL if no SELECT or DML statement has run. Otherwise, it returns the number of rows returned by a SELECT statement or affected by a DML statement (a PLS_INTEGER).

 If a SELECT INTO statement without a BULK COLLECT clause returns multiple rows, PL/SQL raises the predefined exception TOO_MANY_ROWS and SQL%ROWCOUNT returns 1, not the actual number of rows that satisfy the query. Furthermore, the value of SQL%ROWCOUNT attribute is unrelated to the state of a transaction.

Therefore: When a transaction rolls back to a savepoint, the value of SQL%ROWCOUNT is not restored to the value it had before the save point. When an autonomous transaction ends, SQL%ROWCOUNT is not restored to the original value in the parent transaction.

Comments

  1. Thanks a lot for the DBMS_lob.substr. I never would have came up with that.

    ReplyDelete

Post a Comment

Popular posts from this blog

Why DBMS_OUTPUT.PUT_LINE should not be in your application code

A database developer recently came across my  Bulletproof PL/SQL  presentation, which includes this slide. That first item in the list caught his attention: Never put calls to DBMS_OUTPUT.PUT_LINE in your application code. So he sent me an email asking why I would say that. Well, I suppose that is the problem with publishing slide decks. All the explanatory verbiage is missing. I suppose maybe I should do a video. :-) But in the meantime, allow me to explain. First, what does DBMS_OUTPUT.PUT_LINE do? It writes text out to a buffer, and when your current PL/SQL block terminates, the buffer is displayed on your screen. [Note: there can be more to it than that. For example, you could in your own code call DBMS_OUTPUT.GET_LINE(S) to get the contents of the buffer and do something with it, but I will keep things simple right now.] Second, if I am telling you not to use this built-in, how could text from your program be displayed on your screen? Not without a lot o...

How to Pick the Limit for BULK COLLECT

This question rolled into my In Box today: In the case of using the LIMIT clause of BULK COLLECT, how do we decide what value to use for the limit? First I give the quick answer, then I provide support for that answer Quick Answer Start with 100. That's the default (and only) setting for cursor FOR loop optimizations. It offers a sweet spot of improved performance over row-by-row and not-too-much PGA memory consumption. Test to see if that's fast enough (likely will be for many cases). If not, try higher values until you reach the performance level you need - and you are not consuming too much PGA memory.  Don't hard-code the limit value: make it a parameter to your subprogram or a constant in a package specification. Don't put anything in the collection you don't need. [from Giulio Dottorini] Remember: each session that runs this code will use that amount of memory. Background When you use BULK COLLECT, you retrieve more than row with each fetch, ...

Recommendations for unit testing PL/SQL programs

I have recently received a couple of requests for recommendations regarding unit testing of PL/SQL programs. I thought I would share with you what I told them. First, some background:  unit testing  refers to the process of testing individual subprograms for correctness, as opposed to overall application testing (which, these days, almost always means visiting a website). The basic idea behind unit testing is that if you verify that each individual subprogram works correctly, then you are much less likely to have bugs in higher-level programs that call those tested subprograms. And when you do, you know you can focus on the way the tested subprograms are used, and not the subprograms themselves. The most important application of a unit test is to participate in a regression test , which can be run to verify one's code works today as well as it did yesterday. That will greatly reduce the chance of you upgrading the application and users complaining that a bunch of feature...