Skip to main content

PL/SQL Puzzle: What code can be removed?

I published a PL/SQL puzzle on Twitter on November 6 2019. I asked the following question:
Which lines of code can be removed (either entirely or in part) from the block below and not affect the output of the program in any way?
I neglected to mention in my original tweet a few important assumptions:
  1. You are running this code on Oracle Database 10g or higher.
  2. Server output is turned on.
  3. Whitespace (spaces, tabs, new-lines) don't count.
Here's the code. I will publish it as an image, just as I did on Twitter, so that you can give it a go yourself, before taking a look at the answers from me and others below that.
Check out the Twitter conversation for all the answers that were submitted. It's a fun read!

Here are the full lines that I believe can be removed:

2 - There is not need to declare the iterator used in a FOR loop, numeric or cursor versions.

7 - There is no need to declare an "empty" collection to be used to initialize l_objects.

10 - Collections are empty after declaring, always. So no reason to delete.

12 - 15 - Invoking the LAST method on an empty collection always returns NULL, so that call too DBMS_OUTPUT.PUT_LINE will never happen.

17 - This line has no impact on the behavior of the program because SELECT-BULK COLLECT-INTO always wipes out whatever was in the target collection before filling it.

28 - You don't need - and shouldn't use - an EXIT statement inside a FOR loop. It will automatically terminate when all the index values in the collection have been touched.

And here are pieces of code that can be removed from remaining lines:

5 - We do not have to declare this as an associative array. We can remove "INDEX BY PLS_INTEGER", which makes it a nested table. A SELECT-BULK COLLECT-INTO always initializes and extends nested tables and varrays

8 - ":= l_empty" There is no need to initialize a collection with an empty one. It is automatically set to that state.

In which case, the end result is nothing more than this:
DECLARE
   TYPE objects_t IS TABLE OF all_objects.object_name%TYPE;
   l_objects   objects_t;
BEGIN
     SELECT object_name
       BULK COLLECT INTO l_objects
       FROM all_objects
      WHERE object_name LIKE '%TABLE%'
   ORDER BY object_name;

   FOR indx IN 1 .. l_objects.COUNT
   LOOP
      DBMS_OUTPUT.put_line (l_objects (indx));
   END LOOP;
END;
You can run (and play around with) both versions on LiveSQL with this script.

Did I miss anything? Do you disagree with any of my removals?




Comments

  1. I’ve solved my own confusion and replied to you by Twitter. Now my current question is how to write a plsql procedure comparing the output content of two types of PLSQL codes?

    ReplyDelete

Post a Comment

Popular posts from this blog

Running out of PGA memory with MULTISET ops? Watch out for DISTINCT!

A PL/SQL team inside Oracle made excellent use of nested tables and MULTISET operators in SQL, blending data in tables with procedurally-generated datasets (nested tables).  All was going well when they hit the dreaded: ORA-04030: out of process memory when trying to allocate 2032 bytes  They asked for my help.  The error occurred on this SELECT: SELECT  *    FROM header_tab trx    WHERE (generated_ntab1 SUBMULTISET OF trx.column_ntab)       AND ((trx.column_ntab MULTISET             EXCEPT DISTINCT generated_ntab2) IS EMPTY) The problem is clearly related to the use of those nested tables. Now, there was clearly sufficient PGA for the nested tables themselves. So the problem was in executing the MULTISET-related functionality. We talked for a bit about dropping the use of nested tables and instead doing everything in SQL, to avoid the PGA error. That would, however require lots of wo...

How to Pick the Limit for BULK COLLECT

This question rolled into my In Box today: In the case of using the LIMIT clause of BULK COLLECT, how do we decide what value to use for the limit? First I give the quick answer, then I provide support for that answer Quick Answer Start with 100. That's the default (and only) setting for cursor FOR loop optimizations. It offers a sweet spot of improved performance over row-by-row and not-too-much PGA memory consumption. Test to see if that's fast enough (likely will be for many cases). If not, try higher values until you reach the performance level you need - and you are not consuming too much PGA memory.  Don't hard-code the limit value: make it a parameter to your subprogram or a constant in a package specification. Don't put anything in the collection you don't need. [from Giulio Dottorini] Remember: each session that runs this code will use that amount of memory. Background When you use BULK COLLECT, you retrieve more than row with each fetch, ...

PL/SQL 101: Three ways to get error message/stack in PL/SQL

The PL/SQL Challenge quiz for 10 September - 16 September 2016 explored the different ways you can obtain the error message / stack in PL/SQL. Note: an error stack is a sequence of multiple error messages that can occur when an exception is propagated and re-raised through several layers of nested blocks. The three ways are: SQLERRM - The original, traditional and (oddly enough) not currently recommended function to get the current error message. Not recommended because the next two options avoid a problem which you are unlikely  to run into: the error stack will be truncated at 512 bytes, and you might lose some error information. DBMS_UTILITY.FORMAT_ERROR_STACK - Returns the error message / stack, and will not truncate your string like SQLERRM will. UTL_CALL_STACK API - Added in Oracle Database 12c, the UTL_CALL_STACK package offers a comprehensive API into the execution call stack, the error stack and the error backtrace.  Note: check out this LiveSQL script if...